Assessing the quality of adhesive bonded joints using an innovative neural network approach

Author:

Vasilios Katsiropoulos Christos,D. Drainas Evangelos,G. Pantelakis Spiros

Abstract

Purpose – The purpose of this paper is to assess the quality of adhesively bonded joints using an alternative artificial neural networks (ANN) approach. Design/methodology/approach – Following the necessary surface pre-treatment and bonding process, the coupons were investigated for possible defects using C-scan ultrasonic inspection. Afterwards, the damage severity factor (DSF) theory was applied in order to quantify the existing damage state. A series of G IC mechanical tests was then conducted so as to assess the fracture toughness behavior of the bonded samples. Finally, the data derived both from the NDT tests (DSF) and the mechanical tests (fracture toughness energy) were combined and used to train the ANN which was developed within the present work. Findings – Using the developed neural network (NN) the bonding quality, in terms not only of defects but also of fracture toughness behavior, can be accessed through NDT testing, minimizing the need for mechanical tests only in the initial material characterization phase. Originality/value – The innovation of the paper stands on the feasibility of an alternative approach for assessing the quality of adhesively bonded joints using and ANNs, thus minimizing the necessary testing effort.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3