Thermosolutal convection of a nanofluid in ∧-shaped cavity saturated by a porous medium

Author:

Aly Abdelraheem M.,Raizah Zehba

Abstract

Purpose The purpose of this study is to simulate the thermo-solutal convection resulting from a circular cylinder hanging in a rod inside a ∧-shaped cavity. Design/methodology/approach The two dimensional ∧-shaped cavity is filled by Al2O3-water nanofluid and saturated by three different levels of heterogeneous porous media. An incompressible smoothed particle hydrodynamics (ISPH) method is adopted to solve the governing equations of the present problem. The present simulations have been performed for the alteration of buoyancy ratio (2N2), radius of a circular cylinder (0.05Rc0.3), a height of a rod (0.1Lh0.4), Darcy parameter (103Da105), Lewis number (1Le40), solid volume fraction (0ϕ0.06), porous levels (0η1=η21.5)and various boundary-wall conditions. Findings The performed numerical simulations indicated the importance of embedded shapes on the distributions of temperature, concentration and velocity fields inside ∧-shaped cavity. Increasing buoyancy ratio parameter enhances thermo-solutal convection and nanofluid velocity. Adiabatic conditions of the vertical-walls of ∧-shaped cavity augment the distributions of the temperature and concentration. Regardless the Darcy parameter, a homogeneous porous medium gives the lowest values of a nanofluid velocity. Originality/value ISPH method is used to simulate thermo-solutal convection of a nanofluid inside a novel ∧-shaped cavity containing a novel embedded shape and heterogeneous porous media.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference40 articles.

1. Natural convection of a nanofluid-filled circular enclosure partially saturated with a porous medium using ISPH method,2020

2. Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles;Physica A: Statistical Mechanics and Its Applications,2020

3. Double-diffusive convection of solid particles in a porous X-shaped cavity filled with a nanofluid;Physica Scripta,2021

4. Incompressible smoothed particle hydrodynamics method for natural convection of a ferrofluid in a partially layered porous cavity containing a sinusoidal wave rod under the effect of a variable magnetic field;AIP Advances,2019

5. Natural convection from heated fin shapes in a nanofluid-filled porous cavity using incompressible smoothed particle hydrodynamics;International Journal of Numerical Methods for Heat and Fluid Flow,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3