Mixed convection boundary layer flow past a vertical flat plate embedded in a non-Darcy porous medium saturated by a nanofluid

Author:

C. Roşca Natalia,V. Roşca Alin,Groşan Teodor,Pop Ioan

Abstract

Purpose – The purpose of this paper is to numerically solve the problem of steady mixed convection boundary layer flow past a vertical flat plate embedded in a fluid-saturated porous medium filled by a nanofluid. The non-Darcy equation model along with the mathematical nanofluid model proposed by Tiwari and Das (2007) has been used. Design/methodology/approach – Using appropriate similarity transformations, the basic partial differential equations are transformed into ordinary differential equations. These equations have been solved numerically for different values of the nanoparticle volume fraction, the mixed convection and the non-Darcy parameters using the bvp4c function from Matlab. A stability analysis has been also performed. Findings – Numerical results are obtained for the reduced skin-friction, heat transfer and for the velocity and temperature profiles. The results indicate that dual solutions exist for the opposing flow case (λ<0). The stability analysis indicates that for the opposing flow case, the lower solution branch is unstable, while the upper solution branch is stable. In addition, it is shown that for a regular fluid (φ=0) a very good agreement exists between the present numerical results and those reported in the open literature. Research limitations/implications – The problem is formulated for three types of nanoparticles, namely, copper (Cu), alumina (Al2O3) and titania (TiO2). However, the paper present results here only for the Cu nanoparticles. The analysis reveals that the boundary layer separates from the plate. Beyond the turning point it is not possible to get the solution based on the boundary-layer approximations. To obtain further solutions, the full basic partial differential equations have to be solved. Practical implications – Nanofluids have many practical applications, for example, the production of nanostructured materials, engineering of complex fluids, for cleaning oil from surfaces due to their excellent wetting and spreading behavior, etc. Social implications – Nanofluids could be applied to almost any disease treatment techniques by reengineering the nanoparticle properties. Originality/value – The present results are original and new for the boundary-layer flow and heat transfer past a vertical flat plate embedded in a porous medium saturated by a nanofluid. Therefore, this study would be important for the researchers working in porous media in order to become familiar with the flow behavior and properties of such nanofluids.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3