Forecasting time-varying daily betas: a new nonlinear approach

Author:

Messis Petros,Zapranis Achilleas

Abstract

Purpose – The purpose of this paper is to examine the predictive ability of different well-known models for capturing time variation in betas against a novel approach where the beta coefficient is treated as a function of market return. Design/methodology/approach – Different GARCH models, the Kalman filter algorithm and the Schwert and Seguin model are used against our novel approach. The mean square error, the mean absolute error and the Diebold and Mariano test statistic constitute the measures of forecast accuracy. All models are tested over nine consecutive years and three different samples. Findings – The results show substantial differences in predictive accuracy among the samples. The new approach of modelling the systematic risk overwhelms the rest of the models in longer samples. In the smallest sample, the Kalman filter random walk model prevails. The examination of parameters between two groups of stocks with best and worst accuracy results depicts significant variations. For these stocks, the iid assumption of return is rejected and large differences exist on diagnostic tests. Originality/value – This study contributes to the literature with different ways. First, it examines the predictive accuracy of betas with different well-known models and introduces a novel approach. Second, after constructing betas from the estimated models’ parameters, they are used for out-of-sample instead of in-sample forecasts over nine consecutive years and three different samples. Third, a more closely examination of the models’ parameters could signal at an early stage the candidate models with the expected lowest forecasting errors. Finally, the study carries out some diagnostic tests for examining whether the existence of iid normal returns is accompanied by better performance.

Publisher

Emerald

Subject

Business, Management and Accounting (miscellaneous),Finance

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing and comparing conditional risk‐return relationship with a new approach in the cross‐sectional framework;International Journal of Finance & Economics;2019-12-11

2. Impact of regulatory announcements on systemic risk in the Indian telecom sector;International Journal of Emerging Markets;2018-11-29

3. The time traveller’s CAPM;Investment Analysts Journal;2016-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3