Synthesis and investigation of the properties of tungstate-based anticorrosion pigments in coatings

Author:

Kalendova Andrea,Hájková Tereza

Abstract

Purpose – This paper aims to synthesize anticorrosion pigments containing tungsten for paints intended for corrosion protection of metals. Design/methodology/approach – The anticorrosion pigments were prepared by high-temperature, solid-state synthesis from the respective oxides, carbonates and calcium metasilicate. Stoichiometric tungstates and core-shell tungstates with a nonisometric particle shape containing Ca, Sr, Zn, Mg and Fe were synthesized. The pigments were examined by X-ray diffraction analysis and by scanning electron microscopy. Paints based on an epoxy resin and containing the substances at a pigment volume concentration (PVC) = 10 volume per cent were prepared. The paints were subjected to physico-mechanical tests and to tests in corrosion atmospheres. The corrosion test results were compared to those of the paint with a commercial pigment, which is used in many industrial applications. Findings – The tungstate structure of each pigment was elucidated. The core-shell tungstates exhibit a nonisometric particle shape. The pigments prepared were found to impart a very good anticorrosion efficiency to the paints. A high efficiency was demonstrated for the stoichiometric tungstates containing Fe and Zn and for core-shell tungstates containing Mg and Zn. Practical implications – The pigments can be used with advantage for the formulation of paints intended for corrosion protection of metals. The pigments also improve the paints’ physical properties. Originality/value – The use of the pigments in anticorrosion paints for the protection of metals is new. The benefits include the use and the procedure of synthesis of anticorrosion pigments which are free from heavy metals and are acceptable from the environmental protection point of view. Moreover, the core-shell tungstates, whose high efficiency is comparable to that of the stoichiometric tungstates, have lower tungsten content.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3