Author:
Kalendova Andrea,Hájková Tereza
Abstract
Purpose
– This paper aims to synthesize anticorrosion pigments containing tungsten for paints intended for corrosion protection of metals.
Design/methodology/approach
– The anticorrosion pigments were prepared by high-temperature, solid-state synthesis from the respective oxides, carbonates and calcium metasilicate. Stoichiometric tungstates and core-shell tungstates with a nonisometric particle shape containing Ca, Sr, Zn, Mg and Fe were synthesized. The pigments were examined by X-ray diffraction analysis and by scanning electron microscopy. Paints based on an epoxy resin and containing the substances at a pigment volume concentration (PVC) = 10 volume per cent were prepared. The paints were subjected to physico-mechanical tests and to tests in corrosion atmospheres. The corrosion test results were compared to those of the paint with a commercial pigment, which is used in many industrial applications.
Findings
– The tungstate structure of each pigment was elucidated. The core-shell tungstates exhibit a nonisometric particle shape. The pigments prepared were found to impart a very good anticorrosion efficiency to the paints. A high efficiency was demonstrated for the stoichiometric tungstates containing Fe and Zn and for core-shell tungstates containing Mg and Zn.
Practical implications
– The pigments can be used with advantage for the formulation of paints intended for corrosion protection of metals. The pigments also improve the paints’ physical properties.
Originality/value
– The use of the pigments in anticorrosion paints for the protection of metals is new. The benefits include the use and the procedure of synthesis of anticorrosion pigments which are free from heavy metals and are acceptable from the environmental protection point of view. Moreover, the core-shell tungstates, whose high efficiency is comparable to that of the stoichiometric tungstates, have lower tungsten content.
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献