Author:
Zhou Feng,Lu S. S.,Jiang B.,Song R.G.
Abstract
Purpose
This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.
Design/methodology/approach
This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.
Findings
The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.
Originality/value
The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.