Galvanic corrosion behaviors of the low-carbon ferritic stainless steel ERW (electrical resistance welding) joint in the simulated seawater

Author:

Li Xiaohua,Shao Yi,Miao Weixing,Liu Yongchang,Gao Zhiming,Liu Chenxi

Abstract

Purpose The purpose of this paper is to focus on the galvanic corrosion behaviors of the low-carbon ferritic stainless steel electrical resistance welding (ERW) joint in the simulated seawater. Design/methodology/approach The electrochemical methods such as electrochemical noise, galvanic current and TOEFL polarization curve tests were used to study the galvanic corrosion behaviors of ERW joints of low-carbon ferritic stainless steel in simulated seawater. On this basis, a reliable accelerated corrosion method was developed. Findings The corrosion type of the base metal and joint is the typical local corrosion. The order of corrosion resistance from strong to weak is: weld zone > base metal > low-temperature heat-affected zone (HAZ) > high-temperature HAZ. The results of constant current-constant potential accelerated corrosion test show that after constant current-constant potential accelerated corrosion, the joints present a typical groove corrosion pattern. The groove initiating area is located in the HAZ, and the corrosion degree in the weld zone is relatively light, which is consistent with the electrochemical test results. Originality/value This paper has clarified the galvanic corrosion behaviors of low-carbon ferritic stainless steel ERW joints. Moreover, a reliable accelerated corrosion method for the low-carbon ferritic stainless steel ERW joint has been developed.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3