Six Sigma quality evaluation of life test data based on Weibull distribution

Author:

A Niveditha,Joghee Ravichandran

Abstract

PurposeWhile Six Sigma metrics have been studied by researchers in detail for normal distribution-based data, in this paper, we have attempted to study the Six Sigma metrics for two-parameter Weibull distribution that is useful in many life test data analyses.Design/methodology/approachIn the theory of Six Sigma, most of the processes are assumed normal and Six Sigma metrics are determined for such a process of interest. In reliability studies non-normal distributions are more appropriate for life tests. In this paper, a theoretical procedure is developed for determining Six Sigma metrics when the underlying process follows two-parameter Weibull distribution. Numerical evaluations are also considered to study the proposed method.FindingsIn this paper, by matching the probabilities under different normal process-based sigma quality levels (SQLs), we first determined the Six Sigma specification limits (Lower and Upper Six Sigma Limits- LSSL and USSL) for the two-parameter Weibull distribution by setting different values for the shape parameter and the scaling parameter. Then, the lower SQL (LSQL) and upper SQL (USQL) values are obtained for the Weibull distribution with centered and shifted cases. We presented numerical results for Six Sigma metrics of Weibull distribution with different parameter settings. We also simulated a set of 1,000 values from this Weibull distribution for both centered and shifted cases to evaluate the Six Sigma performance metrics. It is found that the SQLs under two-parameter Weibull distribution are slightly lesser than those when the process is assumed normal.Originality/valueThe theoretical approach proposed for determining Six Sigma metrics for Weibull distribution is new to the Six Sigma Quality practitioners who commonly deal with normal process or normal approximation to non-normal processes. The procedure developed here is, in fact, used to first determine LSSL and USSL followed by which LSQL and USQL are obtained. This in turn has helped to compute the Six Sigma metrics such as defects per million opportunities (DPMOs) and the parts that are extremely good per million opportunities (EGPMOs) under two-parameter Weibull distribution for lower-the-better (LTB) and higher-the-better (HTB) quality characteristics. We believe that this approach is quite new to the practitioners, and it is not only useful to the practitioners but will also serve to motivate the researchers to do more work in this field of research.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference21 articles.

1. Six Sigma quality: a structured review and implications for future research;International Journal of Quality and Reliability Management,2010

2. Six sigma performance for non-normal processes;European Journal of Operational Research,2015

3. Some pros and cons of Six Sigma: an academic perspective;The TQM Magazine,2004

4. Six Sigma in service organizations: benefits, challenges and difficulties, common myths, empirical observations and success factors;International Journal of Quality and Reliability Management,2007

5. Z and t distributions in hypothesis testing: unequal division of type i risk;Journal of Modern Applied Statistical Methods,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3