Aptness of nano alumina (Al2O3) with high range water reducer-incorporated concrete

Author:

Peerzada Mudasir,Adnan Khan,Bilal Basrah,Janees Riyaz,Qazi Bazila,Javed Naqash Ahmed

Abstract

Purpose The purpose of this paper is to study the effect of nano alumina (Al2O3) on the properties of fresh concrete, hardened concrete and microstructure of concrete incorporated with high range water reducer (HRWR). This initiative was taken to improve characteristic properties of concrete using nano alumina because nano alumina can be easily be manufactured from a scrap of industrial aluminum products, so its incorporation in concrete will not only reduce industrial aluminum waste but will also change the morphology of concrete at the microstructural level. Design/methodology/approach To accomplish the objectives of the research, four different concrete mixes with the constant water–cement ratio (W/C) and superplasticizer (SP) content 0.4 and 0.6% by weight of cement, respectively, were prepared, whereas nano alumina content was altered by 0.3% and 0.4% by weight of cement. Fresh property of concrete was analyzed by using slump cone test, whereas hardened properties of concrete were analyzed through compression test and flexural strength test. The interaction of nano alumina with concrete composite was evaluated using an X-ray diffraction test. Findings It was observed that 0.6% superplasticizer by weight of cement increased workability by 22% but with the addition of 0.3%, nano alumina by weight of cement workability decreased by 31%. Compressive strength increased by 4.88% with the addition of 0.6% superplasticizer but with the addition of 0.3% nano alumina by weight of cement compressive strength increased by 18.60%. Also, flexural strength increased by 1.21% with the addition of 0.6% superplasticizer by weight of cement but with the addition of 0.3% nano alumina by weight of cement flexural strength increased by 8.76%. With the addition of superplasticizer, alite and belite phases remained un-hydrated but with the addition of nano alumina alite phase was hydrated while belite phase was un-hydrated. The size of belite crystals in mixes having nano alumina was less than that of mix having 0.6% superplasticizer. Also with the addition of nano alumina, a calcium aluminum silicate phase was formed which was responsible for the increment of strength in mixes having nano alumina. Originality/value Incorporation nano alumina (Al2O3) in concrete will not only reduce industrial aluminum waste but will also reduce CO2 emission. Nano alumina (Al2O3) also changes morphology of concrete at micro structural level.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference32 articles.

1. Effect of super plasticizer on fresh and hardened properties of concrete;Journal of Agricultural Science and Engineering,2015

2. A review of fibrous reinforcements of concrete;Journal of Reinforced Plastics and Composites,2017

3. Experimental investigation on nano alumina based concrete;ARPN Journal of Engineering and Applied Sciences,2021

4. Improving environmental sustainability of concrete products: investigation on MWC thermal and mechanical properties;Energy and Buildings,2009

5. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings;Energy and Buildings,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3