SKO Types: an entity-based scientific knowledge objects metadata schema

Author:

Xu Hao,Giunchiglia Fausto

Abstract

Purpose – This paper aims to propose an entity-based scientific metadata schema, i.e. Scientific Knowledge Object (SKO) Types. During the past 50 years, many metadata schemas have been developed in a variety of disciplines. However, current scientific metadata schemas focus on describing data, but not entities. They are descriptive, but few of them are structural and administrative. Design/methodology/approach – To describe entities in scientific knowledge, the theory of SKO Types is proposed. SKO Types is an entity-based theory for representing and linking SKOs. It defines entities, relationships between entities and attributes of each entity in the scientific domain. Findings – In scientific knowledge management, SKO Types serves as the basis for relating entities, entity components, aggregated entities, relationships and attributes to various tasks, e.g. linked entity, rhetorical structuring, strategic reading, semantic annotating, etc., that users may perform when consulting ubiquitous SKOs. Originality/value – SKO Types can be widely applied in various digital libraries and scientific knowledge management systems, while for the existing legacy of scientific publications and their associated metadata schemas.

Publisher

Emerald

Subject

Management of Technology and Innovation,Strategy and Management

Reference16 articles.

1. Cantara, L. (2005), “Mets: the metadata encoding and transmission standard”, Metadata: A Cataloger’s Primer , Routledge, London, p. 237.

2. Delsey, T. (2002), “Functional analysis of the MARC 21 bibliographic and holdings formats”, Library of Congress, Network Development, and MARC StandardsOffice, available at: www.loc.gov/marc/marc-functional-analysis/original_source/analysis.pdf

3. Doerr, M. (2003), “The cidoc conceptual reference module: an ontological approach tosemantic interoperability of metadata”, AI magazine , Vol. 24 No. 3, p. 75.

4. Giunchiglia, F. , Xu, H. , Birukou, A. and Chenu, R. (2010a), “Scientific knowledge object patterns”, Proceedings of 15th European Conference on Pattern Languages of Program, EuroPLoP 2010, Irsee Monastery, Bavaria.

5. Giunchiglia, F. , Chenu-Abente, R. , Xu, H. and Kharkevich, U. (2010b), “A metadata-enabled scientific discourse platform”, E-Print, University of Trento, Trento, Technical Report # DISI-10-069, available at: http://eprints.biblio.unitn.it/archive/00001939/01/069.pdf (accessed 10 October 2014).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3