Enabling organizations to implement smarter, customized social computing platforms by leveraging knowledge flow patterns

Author:

Chandra Ramesh,Iyer Reethika S,Raman Ramakrishnan

Abstract

Purpose – The purpose of this study was to understand the knowledge sharing in projects based on knowledge flow patterns. The impact of attrition, thereby leading to a loss of tacit knowledge, inability to capture and reuse knowledge and inability to understand the knowledge flow patterns, which leads to lack of structured workspace collaboration, are frequently faced challenges in organizations. The change in knowledge sourcing behaviors by the current generation workforce has a high reaching impact in driving collaboration among employees. Design/methodology/approach – This paper attempts to study this impact and identify means to improve the effectiveness of collective knowledge sharing via social computing platforms. As part of this study, customized solutions are devised based on knowledge flow patterns prevalent in teams. Knowledge network analysis (KNA), a socio-metric analysis, is performed to understand knowledge flow patterns among employees in a team which helps understand the relationships between team members with respect to knowledge sharing. KNA helps in understanding ties and interactions between human and system resources. Findings – Significant changes were observed in knowledge sourcing and sharing behaviors. Capture of the tacit knowledge of employees further resulted in reducing the impact of knowledge attrition. For instance, targeted communities of practice (CoPs) based on the presence of cliques within teams enabled teams to complete projects effectively and efficiently. Practical implications – The results are used to identify push and pull networks to enable effective knowledge management (KM). Results of this study reveal that analyzing knowledge flow patterns in a team and deploying a customized social computing platform that is tailored to address the needs of specific knowledge flow patterns within that team, significantly enhances collaborative sharing as opposed to a standardized “one-size-fits-all” platform. Originality/value – This paper is an original creation after research by the authors for a continuous assessment of KM within the organization.

Publisher

Emerald

Subject

Management of Technology and Innovation,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3