Modeling risk for long and short trading positions

Author:

Angelidis Timotheos,Degiannakis Stavros

Abstract

PurposeAims to investigate the accuracy of parametric, nonparametric, and semiparametric methods in predicting the one‐day‐ahead value‐at‐risk (VaR) measure in three types of markets (stock exchanges, commodities, and exchange rates), both for long and short trading positions.Design/methodology/approachThe risk management techniques are designed to capture the main characteristics of asset returns, such as leptokurtosis and asymmetric distribution, volatility clustering, asymmetric relationship between stock returns and conditional variance, and power transformation of conditional variance.FindingsBased on back‐testing measures and a loss function evaluation method, finds that the modeling of the main characteristics of asset returns produces the most accurate VaR forecasts. Especially for the high confidence levels, a risk manager must employ different volatility techniques in order to forecast accurately the VaR for the two trading positions.Practical implicationsDifferent models achieve accurate VaR forecasts for long and short trading positions, indicating to portfolio managers the significance of modeling separately the left and the right side of the distribution of returns.Originality/valueThe behavior of the risk management techniques is examined for both long and short VaR trading positions; to the best of one's knowledge, this is the first study that investigates the risk characteristics of three different financial markets simultaneously. Moreover, a two‐stage model selection is implemented in contrast with the most commonly used back‐testing procedures to identify a unique model. Finally, parametric, nonparametric, and semiparametric techniques are employed to investigate their performance in a unified environment.

Publisher

Emerald

Subject

Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3