Environmental impact reduction as a new dimension for quality measurement of healthcare services

Author:

Esmaeili Amin,McGuire Charles,Overcash Michael,Ali Kamran,Soltani Seyed,Twomey Janet

Abstract

Purpose The purpose of this paper is to provide a detailed accounting of energy and materials consumed during magnetic resonance imaging (MRI). Design/methodology/approach The first and second stages of ISO standard (ISO 14040:2006 and ISO 14044:2006) were followed to develop life cycle inventory (LCI). The LCI data collection took the form of observations, time studies, real-time metered power consumption, review of imaging department scheduling records and review of technical manuals and literature. Findings The carbon footprint of the entire MRI service on a per-patient basis was measured at 22.4 kg CO2eq. The in-hospital energy use (process energy) for performing MRI is 29 kWh per patient for the MRI machine, ancillary devices and light fixtures, while the out-of-hospital energy consumption is approximately 260 percent greater than the process energy, measured at 75 kWh per patient related to fuel for generation and transmission of electricity for the hospital, plus energy to manufacture disposable, consumable and reusable products. The actual MRI and standby energy that produces the MRI images is only about 38 percent of the total life cycle energy. Research limitations/implications The focus on methods and proof-of-concept meant that only one facility and one type of imaging device technology were used to reach the conclusions. Based on the similar studies related to other imaging devices, the provided transparent data can be generalized to other healthcare facilities with few adjustments to utilization ratios, the share of the exam types, and the standby power of the facilities’ imaging devices. Practical implications The transparent detailed life cycle approach allows the data from this study to be used by healthcare administrators to explore the hidden public health impact of the radiology department and to set goals for carbon footprint reductions of healthcare organizations by focusing on alternative imaging modalities. Moreover, the presented approach in quantifying healthcare services’ environmental impact can be replicated to provide measurable data on departmental quality improvement initiatives and to be used in hospitals’ quality management systems. Originality/value No other research has been published on the life cycle assessment of MRI. The share of outside hospital indirect environmental impact of MRI services is a previously undocumented impact of the physician’s order for an internal image.

Publisher

Emerald

Subject

Health Policy,General Business, Management and Accounting

Reference30 articles.

1. Life cycle assessment perspectives on delivering an infant in the US;Science of The Total Environment,2012

2. Estimate of the carbon footprint of the US health care sector;JAMA,2009

3. The carbon footprints of home and in-center maintenance hemodialysis in the United Kingdom;Hemodialysis International,2011

4. ‘Partners in clime’: sustainable development and climate change – what can the National Health Service do?;Public Health,2009

5. Detroit Medical Center (2007), “Environmental management system (EMS) and quality management system (QMS) overview for vendors”, available at: www.dmc.org/docs/librariesprovider74/default-document-library/08-ems_qmsoverviewforvendor.pdf?sfvrsn=2 (accessed May 12, 2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3