Identifying domain relevant user generated content through noise reduction: a test in a Chinese stock discussion forum

Author:

Yan Xiangbin,Li Yumei,Fan Weiguo

Abstract

Purpose Getting high-quality data by removing the noisy data from the user-generated content (UGC) is the first step toward data mining and effective decision-making based on ubiquitous and unstructured social media data. This paper aims to design a framework for revoking noisy data from UGC. Design/methodology/approach In this paper, the authors consider a classification-based framework to remove the noise from the unstructured UGC in social media community. They treat the noise as the concerned topic non-relevant messages and apply a text classification-based approach to remove the noise. They introduce a domain lexicon to help identify the concerned topic from noise and compare the performance of several classification algorithms combined with different feature selection methods. Findings Experimental results based on a Chinese stock forum show that 84.9 per cent of all the noise data from the UGC could be removed with little valuable information loss. The support vector machines classifier combined with information gain feature extraction model is the best choice for this system. With longer messages getting better classification performance, it has been found that the length of messages affects the system performance. Originality/value The proposed method could be used for preprocessing in text mining and new knowledge discovery from the big data.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

Reference69 articles.

1. Vehicle defect discovery from social media;Decision Support Systems,2012

2. Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms;International Journal of Man-Machine Studies,1992

3. Is all that talk just noise? The information content of internet stock message boards;The Journal of Finance,2004

4. Intentional social action in virtual communities;Journal of Interactive Marketing,2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3