Anti-corrosive potential of Cyperus rotundus as a viable corrosion inhibitor for mild steel in sulphuric acid

Author:

Anitha Rajan,Nusrath Unnisa Chan Basha,Hemapriya Venkatesan,Mohana Roopan Selvaraj,Chitra Subramanian,Chung Ill-Min,Kim Seung-Hyun,Mayakrishnan Prabakaran

Abstract

Purpose Over the past decade, plant extracts are ultimate green candidatures to substitute the expensive and noxious synthetic corrosion inhibitors. In this regard, this study aims to focus on evaluating anti-corrosion properties of green inhibitor Cyperus rotundus (C. rotundus), a perennial herb found throughout India. Design/methodology/approach The biocompatible components present in C. rotundus extract was analyzed by gas chromatography–mass spectroscopy analysis. The corrosion inhibitory effect of C. rotundus was assessed by impedance, polarization and surface morphometric study [atomic force microscopy (AFM)]. Density functional theory (DFT) study was carried using DFT/B3LYP, and basis set used for calculations was 6-31G (d, p) using Gaussian 03 program package. Findings Predominant components such as octadecanoicacid, ethylester, n-hexadecanoic acid, pentanoicacid-4-oxoethyl ester, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane and octamethyl were identified from the extract of C. rotundus. Impedance study demonstrated that the addition of inhibitor reduces the double-layer capacitance and increases the charge transfer resistance. Furthermore, polarization studies indicated that the extract of C. rotundus acted as a mixed-type inhibitor with decrease in corrosion current density with increase in concentration. AFM study evinced the formation of inhibitor film on mild steel surface. The donor–acceptor interactions of active sites of predominant phytoconstituents were substantiated by computational analysis (DFT). Originality/value This paper deals with the inhibition effect of extract of C. rotundus on mild steel in 0.5M H2SO4. C. rotundus has a capability to adsorb on the metal surface, thus hindering corrosion.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3