Non-invasive measurement of spoilage of packed fish using halochromic sensor

Author:

Devarayan Kesavan,Palanisamy Yazhiniyan,Mohan Gangeswar,Theivasigamani Anand,Kandasamy Sabariswaran,Sekar Vimaladevi,Siluvai John Evon Umesh,Sukumaran Monikandon,Marimuthu Ramar,Anjappan Hema

Abstract

Purpose This study aims to develop a pH-functional thin-film sensor for non-invasive measurement of spoilage of packed fish. Design/methodology/approach At first, polymers of natural origin such as hydroxy(propyl)methyl cellulose, potato dextrose agar and starch alongside a pH sensitive-mixed indicator formulation were used to produce thin film sensor. The developed thin film sensor was tested for monitoring the spoilage of seafood stored at 4°C. Using ultraviolet-visible and Fourier-transform infrared spectroscopy, the halochromic sensor was characterised. In addition, the halochromic response of the thin film was directly correlated to the total volatile base nitrogen emitted by the packaged fish, pH, microbial activity and sensory evaluation. Findings The results suggested the developed biopolymer-based thin film sensor showed different colours in line with the spoilage of the packed fish, which could be well correlated with the total volatile base nitrogen, microbial activity and sensory evaluation. In addition, the thin film sensors exhibited a high degree of biodegradability. The biopolymers-based thin film halochromic sensor has exhibited excellent biodegradability along with sensitiveness towards the spoilage of the packed fish. Originality/value In the future, consumers and retailers may prefer seafood containers equipped with such halochromic sensors to determine the degree of food deterioration as a direct indicator of food quality.

Publisher

Emerald

Reference26 articles.

1. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness;Food Control,2020

2. Stimulating UK adolescents’ seafood consumption;Journal of International Food & Agribusiness Marketing,2018

3. Optical biosensors: an exhaustive and comprehensive review;Analyst,2020

4. Recent advances in rapid pathogen detection method based on biosensors;European Journal of Clinical Microbiology & Infectious Diseases,2018

5. Halochromic sensors for monitoring quality of aqua food,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3