Harnessing of newly tailored poly (acrylonitrile)-starch nanoparticle graft copolymer for copper ion removal via oximation reaction as a calorimetric sensor

Author:

Mostafa Khaled,Ameen Heba,El-Ebeisy Amal,El-Sanabary Azza

Abstract

Purpose Herein, this study aims to use our recently tailored and fully characterized poly acrylonitrile (AN)-starch nanoparticle graft copolymer having 60.1 graft yield percentage as a starting substrate for copper ions removal from wastewater effluent after chemical modification with hydroxyl amine via oximation reaction as a calorimetric sensor. Design/methodology/approach The calorimetric sensor batch technique was used to determine the resin's adsorption capacity, while atomic adsorption spectrometry was used to determine the residual copper ions concentration in the filtrate before and after adsorption. This was done to convert the copolymer's abundant nitrile groups into amidoxime groups, and the resulting poly (amidoxime) resin was used as a copper ion adsorbent. To validate the existence of amidoxime groups, the resin was qualitatively characterized using a rapid vanadium ion test and instrumentally using Fourier transform infrared spectroscopy spectra and scanning electron microscopy morphological analysis. Findings At pH 7, 400 ppm copper ions concentration and 0.25 g adsorbent at room temperature, the overall adsorption potential of poly (amidoxime) resin was found to be 115.2 mg/g. The process's adsorption, kinetics and isothermal analysis were examined using various variables such as pH, contact time, copper ion concentration and adsorbent dose. To pretend the adsorption kinetics, various kinetics models, including pseudo-first-order and pseudo-second-order, were applied to the experimental results. The kinetic analysis indicated that the pseudo-second-order rate equation promoted the development of the chemisorption phase better than the pseudo-first-order rate equation. In the case of isothermal investigations, a study of observed correlation coefficient (R2) values indicated that the Langmuir model outperformed the Freundlich model in terms of matching experimental data. Originality/value To the best of the author's information, there is no comprehensive study for copper ions removal from waste water effluent using the recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 graft yield percentage as a starting substrate after chemical modification with hydroxyl amine via oximation reaction as a calorimetric sensor.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3