Author:
Zhang Xinchao,Zhang Huanxia,Pan Danni,Wu Wen,Ma Hui,Cao Jianda,Xu Jia
Abstract
Purpose
This paper aims to determine whether application of graphene layers to cuprammonium filaments affords the latter with excellent mechanical properties and improves their electrical properties. At the same time, a circuit model was established to explore the conductive mechanism of the filament. The actual model is used to verify the correctness of the model.
Design/methodology/approach
The cuprammonium filaments were desizing, the graphene oxide layer-by-layer sizing and reduction integration process by a continuous sizing machine. The electrical properties of mono- and multifilaments in the static condition, as well as the dynamic–mechanical properties of multifilaments, were analysed, and the related conductive mechanism of the filaments was deduced.
Findings
Cuprammonium filaments coated with graphene layers showed good electrical conductivity, and their volume resistance decreased to 4.35 O·cm with increasing number of graphene coats. The X-ray diffraction and thermogravimetric analysis results showed that the graphene layer treatment changed the crystallinity of the copperammonia filaments and improved the thermal stability of the filaments. In the dynamic case, filament resistance was calculated using the equivalent resistance model, and the fitting difference observed was small. This result confirmed the high fit of this circuit model.
Originality/value
Up to the knowledge from literature review, there are no reports on theoretical research on the relation between the electro-mechanical property and structure of conductive filaments.
Subject
Materials Chemistry,Surfaces, Coatings and Films