Structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) thick film ceramics

Author:

Pawar R.P.,Puri Vijaya

Abstract

Purpose – This paper aims to study the structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) thick-film ceramics. Design/methodology/approach – The thick films of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) on the alumina substrate have been delineated using screen printing technique. The structural analysis was carried out using an X-ray diffraction method and scanning electron microscopy. The direct current (DC) electrical resistivity is measured using a two-probe method. Microwave absorption was studied in the 8-18 GHz frequency range by using the Waveguide Reflectometer Method. The permittivity and permeability in the 8-18 GHz frequency range were measured by using Voltage Standing Wave Ratio slotted section method. Findings – The thick films have orthorhombic perovskite structure with dominant (020) plane. By using first-principle calculation method, theoretical and experimental lattice parameter and cell volume of (Sr0.6Ca0.4) (CoyMn1−y) O3 are matched with each other. The cobalt content changes the morphology from plates to needles. The DC electrical resistivity increases with increase in Co content and decreases with increase in temperature. (Sr0.6Ca0.4) (CoyMn1−y) O3 thick film shows 75 per cent microwave absorption both in the X band and Ku band. The microwave permittivity and permeability decreases with increase in frequency and Co content. Originality/value – Structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0). Thick film ceramics on alumina substrate is reported for the first time.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3