Influence of different etching methods on the structural properties of porous silicon

Author:

Zulkifli Fatimah,Radzali Rosfariza,Abd Rahim Alhan Farhanah,Mahmood Ainorkhilah,Mohd Razali Nurul Syuhadah,Abu Bakar Aslina

Abstract

Purpose Porous silicon (Si) was fabricated by using three different wet etching methods, namely, direct current photo-assisted electrochemical (DCPEC), alternating CPEC (ACPEC) and two-step ACPEC etching. This study aims to investigate the structural properties of porous structures formed by using these etching methods and to identify which etching method works best. Design/methodology/approach Si n(100) was used to fabricate porous Si using three different etching methods (DCPEC, ACPEC and two-step ACPEC). All the samples were etched with the same current density and etching duration. The samples were etched by using hydrofluoric acid-based electrolytes under the illumination of an incandescent lamp. Findings Field emission scanning electron microscopy (FESEM) images showed that porous Si etched using the two-step ACPEC method has a higher porosity and density than porous Si etched using DCPEC and ACPEC. The atomic force microscopy results supported the FESEM results showing that porous Si etched using the two-step ACPEC method has the highest surface roughness relative to the samples produced using the other two methods. High resolution X-ray diffraction revealed that porous Si produced through two-step ACPEC has the highest peak intensity out of the three porous Si samples suggesting an improvement in pore uniformity with a better crystalline quality. Originality/value Two-step ACPEC method is a fairly new etching method and many of its fundamental properties are yet to be established. This work presents a comparison of the effect of these three different etching methods on the structural properties of Si. The results obtained indicated that the two-step ACPEC method produced an etched sample with a higher porosity, pore density, surface roughness, improvement in uniformity of pores and better crystalline quality than the other etching methods.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference39 articles.

1. Alternative-current electrochemical etching of uniform porous silicon for photodetector applications;International Journal of Electrochemical Science,2013

2. Responsivity dependent anodization current density of nanoporous silicon based MSM photodetector;Journal of Nanomaterials,2016

3. Characterization of highly hydrophobic coatings deposited organosilanes;Thin Solid Films,2003

4. The porosity calculation of various types of paper using image analysis;Jurnal Pendidikan Fisika Indonesia,2018

5. Porous silicon fabrication by electrochemical and photo-electrochemical methods;Journal of Physics: Conference Series,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of the Morphology of Macroporous Silicon Obtained by Metal-Assisted Etching Using Chromium;2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT);2023-09-26

2. Study of the Morphology of Macroporous Si Obtained by Metal-Stimulated Etching with Au;Nanosistemi, Nanomateriali, Nanotehnologii;2023-09

3. A study on the application of non-fiction writing in writing courses in local universities based on a decentralized Internet model;Applied Mathematics and Nonlinear Sciences;2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3