Abstract
PurposeIn recent years, online public opinion reversal incidents have been occurring frequently, which has increased the complexity of the evolution of online public opinion, and they have become a difficult issue for public opinion management and control. It is of great significance to explore the regularity of online public opinion reversal.Design/methodology/approachCombined with the grey characteristics of online public opinion information, a grey graphical evaluation review technique (G-GERT) network model is constructed based on kernel and grey degree, and the frequency, probability and time of online public opinion reversal nodes are calculated using C-marking method and Z-marking method.FindingsThroughout the online public opinion reversal events, there are all repeated outbreak nodes occurring, so the authors regard the repeated occurrence of outbreak nodes as reversal. According to the average frequency, probability and time of repeated outbreak nodes in the G-GERT network model, the authors predict the corresponding key information of reversal. It can simulate the evolution process of public opinion events accurately.Originality/valueThe G-GERT network model based on kernel and grey degree reveals the regulation of public opinion reversal, predicts the frequency, probability and time of reversal nodes, which are the most concerned and difficult issues for decision-makers. The model provides the decision basis and reference for government decision-making departments.
Reference25 articles.
1. Public opinion analysis of novel coronavirus from online data;Journal of Safety Science and Resilience,2020
2. The damped oscillator model (DOM) and its application in the prediction of emotion development of online public opinions;Expert Systems with Applications,2020
3. Evolution of public opinions in closed societies influenced bybroadcast media;Physica A,2017
4. Analyzing and predicting network public opinion evolution based on group persuasion force of populism;Physica A,2019
5. an optimal delay routing algorithm considering delay variation in the LEO, satellite communication network;Computer Networks,2020
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献