Electrochemical behavior and corrosion resistance of electrodeposited nano-particles Zn-Co-Fe alloy

Author:

Abou-Krisha Mortaga,Assaf Fawzi,Alduaij Omar,Alshammari Abdulrahman G,El-Sheref Fatma

Abstract

Purpose – The purpose of this study was to compare the electrodeposition behavior and corrosion resistance of ternary and binary alloys. Design/methodology/approach – Potentiodynamic polarization resistance measurement and anodic linear sweep voltammetry techniques were used for the corrosion study. The surface morphology and chemical composition of the deposits were examined using scanning electron microscopy and atomic absorption spectroscopy, respectively. The phase structure was characterized by X-ray diffraction analysis. Electrodeposition behavior was carried out using cyclic voltammetry and galvanostatic techniques. Findings – It was found that the obtained ternary alloy exhibited better corrosion resistance and a more-preferred surface appearance compared to the binary alloys that were electrodeposited under similar conditions. Research limitations/implications – The ternary alloy showed better anticorrosion properties compared to binary deposits that were electroplated successfully from the plating baths. The Zn-Co-Fe alloy could be used advantageously in industry because the ternary alloy exhibits the collective properties of the binary alloys in one alloy via the electrodeposition of Zn-Ni-Co alloy. Social implications – Increasing the corrosion resistance implies to social economic increases. Originality/value – To date, the electrodeposition of Zn-Co-Fe alloy was studied in only a small number of articles. It was found that the presence of Co or Fe could provide a useful coating on the steel that would reduce its susceptibility to corrosion attack.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3