Fine‐granularity semantic video annotation

Author:

El‐Khoury Vanessa,Jergler Martin,Abebe Bayou Getnet,Coquil David,Kosch Harald

Abstract

PurposeA fine‐grained video content indexing, retrieval, and adaptation requires accurate metadata describing the video structure and semantics to the lowest granularity, i.e. to the object level. The authors address these requirements by proposing semantic video content annotation tool (SVCAT) for structural and high‐level semantic video annotation. SVCAT is a semi‐automatic MPEG‐7 standard compliant annotation tool, which produces metadata according to a new object‐based video content model introduced in this work. Videos are temporally segmented into shots and shots level concepts are detected automatically using ImageNet as background knowledge. These concepts are used as a guide to easily locate and select objects of interest which are then tracked automatically to generate an object level metadata. The integration of shot based concept detection with object localization and tracking drastically alleviates the task of an annotator. The paper aims to discuss these issues.Design/methodology/approachA systematic keyframes classification into ImageNet categories is used as the basis for automatic concept detection in temporal units. This is then followed by an object tracking algorithm to get exact spatial information about objects.FindingsExperimental results showed that SVCAT is able to provide accurate object level video metadata.Originality/valueThe new contribution in this paper introduces an approach of using ImageNet to get shot level annotations automatically. This approach assists video annotators significantly by minimizing the effort required to locate salient objects in the video.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Segmented Translation Algorithm of Complex Long Sentences Based on Semantic Features;Journal of Physics: Conference Series;2021-04-01

2. Towards a Scene-Based Video Annotation Framework;2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS);2015-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3