A duration-based online reminder system
Author:
Chaurasia Priyanka,McClean Sally,D. Nugent Chris,Scotney Bryan
Abstract
Purpose
– This paper aims to discuss an online sensor-based support system which is believed to be useful for persons with a cognitive impairment, such as those with Alzheimer’s disease, suffering from deficiencies in cognitive skills which reduce their independence. Such patients can benefit from the provision of further assistance such as reminders for carrying out instrumental activities of daily living (iADLs).
Design/methodology/approach
– The system proposed processes data from a network of sensors that have the capability of sensing user interactions and ongoing iADLs in the living environment itself. A probabilistic learning model is built that computes joint probability distributions over different activities representing users’ behavioural patterns in performing activities. This probability model can underpin an intervention framework that prompts the user with the next step in the iADL when inactivity is being observed. This prompt for the next step is inferred from the conditional probability, taking into consideration the iADL steps that have already been completed, in addition to contextual information relating to the time of day and the amount of time already spent on the activity. The originality of the work lies in combining partially observed sensor sequences and duration data associated with the iADLs. The prediction of the next step is then adjusted as further steps are completed and more time is spent towards the completion of the activity; thus, updating the confidence that the prediction is correct. A reminder is only issued when there has been sufficient inactivity on the part of the patient and the confidence is high that the prediction is correct.
Findings
– The results verify that by including duration information, the prediction accuracy of the model is increased, and the confidence level for the next step in the iADL is also increased. As such, there is approximately a 10 per cent rise in the prediction performance in the case of single-sensor activation in comparison to an alternative approach which did not consider activity durations. Thus, it is concluded that incorporating progressive duration information into partially observed sensor sequences of iADLs has the potential to increase performance of a reminder system for patients with a cognitive impairment, such as Alzheimer’s disease.
Originality/value
– Activity duration information can be a potential feature in measuring the performance of a user and distinguishing different activities. The results verify that by including duration information, the prediction accuracy of the model is increased, and the confidence level for the next step in the activity is also increased. The use of duration information in online prediction of activities can also be associated to monitoring the deterioration in cognitive abilities and in making a decision about the level of assistance required. Such improvements have significance in building more accurate reminder systems that precisely predict activities and assist its users, thus, improving the overall support provided for living independently.
Subject
General Computer Science,Theoretical Computer Science
Reference34 articles.
1. Allen, J.F.
and
Ferguson, G.
(1994), “Actions and events in interval temporal logic”, Journal of Logic and Computation, Vol. 4 No. 5, pp. 531-579. 2. Aztiria, A.
,
Izaguirre, A.
and
Augusto, J.C.
(2010), “Learning patterns in ambient intelligence environments: a survey”, Artificial Intelligence Review, Vol. 34 No. 1, pp. 35-51. 3. Bartolomeu, P.
,
Fonseca, J.
and
Vasques, F.
(2008), “Challenges in health smart homes”, Proceedings of the Workshop on Ambient Technologies for Diagnosing and Monitoring Chronic Patients (ATDMCP-08) included in the 2nd International Conference on Pervasive Computing Technologies for Healthcare, Tampere. 4. Boger, J.
,
Hoey, J.
,
Poupart, P.
,
Boutilier, C.
,
Fernie, G.
and
Mihailidis, A.
(2006), “A planning system based on Markov decision processes to guide people with dementia through activities of daily living”, IEEE Transactions on Information Technology in Biomedicine, Vol. 10 No. 2, pp. 323-333. 5. Chaurasia, P.
,
Scotney, B.
,
McClean, S.
and
Nugent, C.
(2010), “An intervention framework for cognitively impaired patients”, 5th International Workshop on Ubiquitous Health and Wellness, Copenhagen, Denmark.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|