Towards an efficient indoor navigation system: a near field communication approach

Author:

Sakpere Wilson E.,Mlitwa Nhlanhla Boyfriend Wilton,Oshin Michael Adeyeye

Abstract

Purpose This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and stringent environments through the experiential manipulation of technical attributes of the positioning and navigation system. Design/methodology/approach The study followed a quantitative and experimental method of empirical enquiry and software engineering and synthesis research methods. The study further entails three implementation processes, namely, map generation, positioning framework and navigation service using a prototype mobile navigation application that uses the near field communication (NFC) technology. Findings The approach and findings revealed that the capability of NFC in leveraging its low-cost infrastructure of passive tags, its availability in mobile devices and the ubiquity of the mobile device provided a cost-effective solution with impressive accuracy and usability. The positioning accuracy achieved was less than 9 cm. The usability improved from 44 to 96 per cent based on feedbacks given by respondents who tested the application in an indoor environment. These showed that NFC is a viable alternative to resolve the challenges identified in previous solutions and technologies. Research limitations/implications The major limitation of the navigation application was that there is no real-time update of user position. This can be investigated and extended further by using NFC in a hybrid make-up with WLAN, radio-frequency identification (RFID) or Bluetooth as a cost-effective solution for real-time indoor positioning because of their coverage and existing infrastructures. The hybrid positioning model, which merges two or more techniques or technologies, is becoming more popular and will improve its accuracy, robustness and usability. In addition, it will balance complexity, compensate for the limitations in the technologies and achieve real-time mobile indoor navigation. Although the presence of WLAN, RFID and Bluetooth technologies are likely to result in system complexity and high cost, NFC will reduce the system’s complexity and balance the trade-off. Practical implications Whilst limitations in existing indoor navigation technologies meant putting up with poor signal and poor communication capabilities, outcomes of the NFC framework will offer valuable insight. It presents new possibilities on how to overcome signal quality limitations at improved turn-around time in constrained indoor spaces. Social implications The innovations have a direct positive social impact in that it will offer new solutions to mobile communications in the previously impossible terrains such as underground platforms and densely covered spaces. With the ability to operate mobile applications without signal inhibitions, the quality of communication – and ultimately, life opportunities – are enhanced. Originality/value While navigating, users face several challenges, such as infrastructure complexity, high-cost solution, inaccuracy and usability. Hence, as a contribution, this paper presents a symbolic map and path architecture of a floor of the test-bed building that was uploaded to OpenStreetMap. Furthermore, the implementation of the RFID and the NFC architectures produced new insight on how to redress the limitations in challenged spaces. In addition, a prototype mobile indoor navigation application was developed and implemented, offering novel solution to the practical problems inhibiting navigation in indoor challenged spaces – a practical contribution to the community of practice.

Publisher

Emerald

Subject

General Engineering

Reference50 articles.

1. An IR local positioning system for smart items and devices,2003

2. Beecher, A.B. (2004), “Wayfinding tools in public library buildings: a multiple case study’, Doctoral thesis”, University of North Texas.

3. Bolz, J. (2011), Indoor Positioning using NFC Tags, Bachelor’s Thesis, Beuth Hochschule für Technik, Berlin.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3