Author:
Ali Ali Mohammed,Jasim Manar Hamid,Al-Kasob Bashar Dheyaa Hussein
Abstract
Purpose
The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the first-order shear deformation beam theory. Also, a simulation of impact process is carried out by ABAQUS finite element (FE) code.
Design/methodology/approach
In theoretical formulation, first strains and stresses are obtained, then kinetic and potential energies are written, and using a combination of Ritz and Lagrange methods, a set of system of motion equations in the form of mass, stiffness and force matrices is obtained. Finally, the motion equations are solved using Runge–Kutta fourth order method.
Findings
The von Mises stress contours at the impact point and contact force from the ABAQUS simulation are illustrated and it is revealed that the theoretical solution is in good agreement with the FE code. The effect of changes in projectile speed, projectile diameter and projectile mass on the results is carefully examined with particular attention to evaluate histories of the impact force and beam recess. One of the important results is that changes in projectile speed have a greater effect on the results than changes in projectile diameter, and also changes in projectile mass have the least effect.
Originality/value
This paper presents a combination of methods of energy, Ritz and Lagrange and also FE code to simulate the problem of sandwich beams under low velocity impact.
Reference43 articles.
1. Localized impact on sandwich structures with laminated facings,1997
2. The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures;Composite Structures,2015
3. Effect of graphene on the methyl methacrylate beam under lateral low-velocity impact;World Journal of Engineering,2020
4. Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite timoshenko beams;Composite Structures,2014
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献