A predictive study on the impact of board characteristics on firm performance of Chinese listed companies based on machine learning methods

Author:

Huang Xin,Tang Ting,Luo Yu Ning,Wang Ren

Abstract

Purpose This study aims to examine the impact of board characteristics on firm performance while also exploring the influential mechanisms that help Chinese listed companies establish effective boards of directors and strengthen their corporate governance mechanisms. Design/methodology/approach This paper uses machine learning methods to investigate the predictive ability of the board of directors' characteristics on firm performance based on the data from Chinese A-share listed companies on the Shanghai and Shenzhen stock exchanges in China during 2008–2021. This study further analyzes board characteristics with relatively strong predictive ability and their predictive models on firm performance. Findings The results show that nonlinear machine learning methods are more effective than traditional linear models in analyzing the impact of board characteristics on Chinese firm performance. Among the series characteristics of the board of directors, the contribution ratio in prediction from directors compensation, director shareholding ratio, the average age of directors and directors' educational level are significant, and these characteristics have a roughly nonlinear correlation to the prediction of firm performance; the improvement of the predictive ability of board characteristics on firm performance in state-owned enterprises in China performs better than that in private enterprises. Practical implications The findings of this study provide valuable suggestions for enriching the theory of board governance, strengthening board construction and optimizing the effectiveness of board governance. Furthermore, these impacts can serve as a valuable reference for board construction and selection, aiding in the rational selection of boards to establish an efficient and high-performing board of directors. Originality/value The study findings unequivocally demonstrate the superiority of nonlinear machine learning approaches over traditional linear models in examining the relationship between board characteristics and firm performance in China. Within the suite of board characteristics, director compensation, shareholding ratio, average age and educational level are particularly noteworthy, consistently demonstrating strong, nonlinear associations with firm performance. Within the suite of board characteristics, director compensation, shareholding ratio, average age and educational level are particularly noteworthy, consistently demonstrating strong, nonlinear associations with firm performance. The study reveals that the predictive performance of board attributes is generally more robust for state-owned enterprises in China in comparison to their counterparts in the private sector.

Publisher

Emerald

Reference87 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3