Abstract
PurposeIn this paper, a mixture of exponential and Rayleigh distributions in the proportionsαand 1 −αand all the parameters in the mixture distribution are estimated based on fuzzy data.Design/methodology/approachThe methods such as maximum likelihood estimation (MLE) and method of moments (MOM) are applied for estimation. Fuzzy data of triangular fuzzy numbers and Gaussian fuzzy numbers for different sample sizes are considered to illustrate the resulting estimation and to compare these methods. In addition to this, the obtained results are compared with existing results for crisp data in the literature.FindingsThe application of fuzziness in the data will be very useful to obtain precise results in the presence of vagueness in data. Mean square errors (MSEs) of the resulting estimators are computed using crisp data and fuzzy data. On comparison, in terms of MSEs, it is observed that maximum likelihood estimators perform better than moment estimators.Originality/valueClassical methods of obtaining estimators of unknown parameters fail to give realistic estimators since these methods assume the data collected to be crisp or exact. Normally, such case of precise data is not always feasible and realistic in practice. Most of them will be incomplete and sometimes expressed in linguistic variables. Such data can be handled by generalizing the classical inference methods using fuzzy set theory.
Subject
Strategy and Management,General Business, Management and Accounting