Experimental investigation on the flow properties of sand granules in the process of sand mold printing

Author:

Guo Zhi,Shan Zhongde,Du Dong,Zhao Mengmeng,Zhang Milan

Abstract

Purpose This paper aims to determine how the viscosity and curing agent content affect the flowability of moist silica sand granules. In addition, a coating device was designed according to the flow properties of silica sand granules. Design/methodology/approach The flowability of silica sand granules premixed with two curing agents of different viscosities is studied using a Jenike shear apparatus. An open-ended device was used in discharge testing of sand granules with a design based on the variable dip angle of the two plates and variable outlet size. Findings The test results show that increasing the curing agent content would significantly decrease the flowability of silica sand granules, and a curing agent of higher viscosity has a greater effect on the flowability of silica sand. The presence of a curing agent strengthens the cohesion among sand granules, lubricates them and restrains their deformation. The shape function of the coating device was obtained by theoretical derivation. Practical implications The flow properties provide a valuable theoretical guidance for the design of coating device for sand mold printing. Originality/value This paper deals with experimental work on flow properties of silica sand granules with different viscosities and curing agent content. The shape function of a wedge-shaped coating device is obtained based on experimental data.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3