Formation and improvement of surface waviness for additive manufacturing 5A06 aluminium alloy component with GTAW system

Author:

Geng Haibin,Li Jinglong,Xiong Jiangtao,Lin Xin,Huang Dan,Zhang Fusheng

Abstract

Purpose As known, the wire and arc additive manufacture technique can achieve stable process control, which is represented with periodic surface waviness, when using empirical methods or feedback control system. But it is usually a tedious work to further reduce it using trial and error method. The purpose of this paper is to unveil the formation mechanism of surface waviness and develop a method to diminish it. Design/methodology/approach Two forming mechanisms, wetting and spreading and remelting, are unveiled by cross-section observation. A discriminant is established to differentiate which mechanism is valid to dominate the forming process under the given process parameters. Findings Finally, a theoretical method is developed to optimize surface waviness, even forming a smooth surface by establishing a matching relation between heat input (line energy) and materials input (the ratio of wire feed speed to travel speed). Originality/value Formation mechanisms are revealed by observing cross-section morphology. A discriminant is established to differentiate which mechanism is valid to dominate the forming process under the given process parameters. A mathematical model is developed to optimize surface waviness, even forming a smooth surface through establishing a matching relation between heat input (line energy) and materials input (the ratio of wire feed speed to travel speed).

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference12 articles.

1. Adebayo, B.(2013), “Characterisation of integrated WAAM and machining process”, PhD thesis, Cranfield University, Cranfield.

2. Additive manufacturing of ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties;Materials Design,2010

3. A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology;The International Journal of Advanced Manufacturing Technology,2015

4. Fabrication of geometrical features using wire and arc additive manufacture;Proceedings of the Institution of Mechanical Engineers Part B, Journal of Engineering Manufacture,2012

5. Geometric roughness analysis in solid free-form manufacturing process;Journal of Materials Processing Technology,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3