Comparative analysis of structure and hardness of cast and direct metal laser sintering produced Co-Cr alloys used for dental devices

Author:

Lapcevic Ana R.,Jevremovic Danimir P,Puskar Tatjana M,Williams Robert J.,Eggbeer Dominic

Abstract

Purpose – The purpose of this paper is to analyse structure and measure hardness of Co-Cr dental alloy samples made with two different technologies, conventional casting method (CCM samples) and additive direct metal laser sintering technology (DMLS samples), and to compare the results. Design/methodology/approach – CCM samples were made in a conventional casting machine, using remanium 800+ Co-Cr dental alloy (Dentaurum, Ispringen, Germany). DMLS samples were fabricated out of EOS CC SP2 Co-Cr alloy (EOS, GmbH, Munich, Germany) using DMLS technology. Samples for structural analysis were plate-shaped (10 × 10 × 1.5 mm3) and for the hardness test were prismatic-shaped (55 × 10.2 × 11.2 mm3). Structure was analysed via an inverting microscope and colour metallography method. Findings – CCM samples have a dense, irregular dendritic mesh, which is typical for the metallic phase of the Co-Cr dental alloy. DMLS alloy has a more homogenous and more compact structure, compared to CCM. Metals, the alloy basis consists of, form semilunar stratified layers, which are characteristic for the additive manufacturing (AM) technique. Hardness values of DMLS (mean value was 439.84 HV10) were found to be higher than those of CCM (mean value was 373.76 HV10). Originality/value – There are several reports about possible use of AM technologies for manufacturing dental devices, and investigation of mechanical properties and biocompatibility behaviour of AM-produced dental alloys. Microstructure of Co-Cr alloy made with DMLS technology has been introduced for the first time in the present paper.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3