Author:
Wang Meng,Li Yongheng,Shi Yanyan,Huang Fenglan
Abstract
Purpose
With the development of artificial intelligence, proximity sensors show their great potential in intelligent perception. This paper aims to propose a new planar capacitive sensor for the proximity sensing of a conductor.
Design/methodology/approach
Different from traditional structures, the proposed sensor is characterized by sawtooth-structured electrodes. A series of numerical simulations have been carried out to study the impact of different geometrical parameters such as the width of the main trunk, the width of the sawtooth and the number of sawtooths. In addition, the impact of the lateral offset of the approaching graphite block is investigated.
Findings
It is found that sensitivity is improved with the increase of the main trunk with, sawtooth width and sawtooth number while a larger lateral offset leads to a decrease in sensitivity. The performance of the proposed planar capacitive proximity sensor is also compared with two conventional planar capacitive sensors. The results show that the proposed planar capacitive sensor is obviously more sensitive than the two conventional planar capacitive sensors.
Originality/value
In this paper, a new planar capacitive sensor is proposed for the proximity sensing of a conductor. The results show that the capacitive sensor with the novel structure is obviously more sensitive than the traditional structures in the detection of the proximity conductor.