A novel method of studying the micro-contact using surface acoustic wave sensor

Author:

Yang Jian,Chen Hejuan

Abstract

Purpose This paper aims to investigate the response behavior of the surface acoustic wave (SAW) sensor under the loading of micro-particles and to evaluate the feasibility of using the SAW sensor to study the micro-contact of the particle–plane interface. Design/methodology/approach An analytical perturbation theory of the coupled system of particle and SAW is presented. It shows that in the weak-coupling regime, the SAW sensor detects the coupling stiffness rather than the additional mass of the particle at the interface. The frequency perturbation formula expressed in parameters of the geometry and mechanical properties of the contact is further derived. The frequency shift of a 262-MHz Rayleigh-type SAW in the oscillation configuration under the loading of multiple starch particles of different sizes has been measured. Findings The experiment results of a linear relationship between the frequency increase and the sum of the radius of particles to the power of 2/3 verified the validity of the theory of linking the SAW response to the geometry and mechanical properties of the contact. Originality/value The SAW sensor could serve as a new candidate for studying the details of mechanical properties of the micro-contact of the interface.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference19 articles.

1. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review;Analytica Chimica Acta,2013

2. Interaction of a contact resonance of microspheres with surface acoustic waves;Physical Review Letters,2013

3. On the role of capillary instabilities in the sandcastle effect;New Journal of Physics,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3