Framework of decision in data modeling for quality improvement

Author:

Sant'Anna Ângelo Márcio Oliveira

Abstract

Purpose – The purpose of this paper is to propose a framework of decision making to aid practitioners in modeling and optimization experimental data for improvement quality of industrial processes, reinforcing idea that planning and conducting data modeling are as important as formal analysis. Design/methodology/approach – The paper presents an application was carried out about the modeling of experimental data at mining company, with support at Catholic University from partnership projects. The literature seems to be more focussed on the data analysis than on providing a sequence of operational steps or decision support which would lead to the best regression model given for the problem that researcher is confronted with. The authors use the concept of statistical regression technique called generalized linear models. Findings – The authors analyze the relevant case study in mining company, based on best statistical regression models. Starting from this analysis, the results of the industrial case study illustrates the strong relationship of the improvement process with the presented framework approach into practice. Moreover, the case study consolidating a fundamental advantage of regression models: modeling guided provides more knowledge about products, processes and technologies, even in unsuccessful case studies. Research limitations/implications – The study advances in regression model for data modeling are applicable in several types of industrial processes and phenomena random. It is possible to find unsuccessful data modeling due to lack of knowledge of statistical technique. Originality/value – An essential point is that the study is based on the feedback from practitioners and industrial managers, which makes the analyses and conclusions from practical points of view, without relevant theoretical knowledge of relationship among the process variables. Regression model has its own characteristics related to response variable and factors, and misspecification of the regression model or their components can yield inappropriate inferences and erroneous experimental results.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting,Business and International Management,General Decision Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3