Unsupervised segmentation of wear particle’s image using local texture feature

Author:

Liu Hong,Wei Haijun,Xie Haibo,Wei Lidui,Li Jingming

Abstract

Purpose The possibility of using a pattern recognition system for wear particle analysis without the need of a human expert holds great promise in the condition monitoring industry. Auto-segmentation of their images is a key to effective on-line monitoring system. Therefore, an unsupervised segmentation algorithm is required. The purpose of this paper is to present a novel approach based on a local color-texture feature. An algorithm is specially designed for segmentation of wear particles’ thin section images. Design/methodology/approach The wear particles were generated by three kinds of tribo-tests. Pin-on-disk test and pin-on-plate test were done to generate sliding wear particles, including severe sliding ones; four-ball test was done to generate fatigue particles. Then an algorithm base on local texture property is raised, it includes two steps, first, color quantization reduces the total quantity of the colors without missing too much of the detail; second, edge image is calculated and by using a region grow technique, the image can be divided into different regions. Parameters are tested, and a criterion is designed to judge the performances. Findings Parameters have been tested; the scale chosen has significant influence on edge image calculation and seeds generation. Different size of windows should be applied to varies particles. Compared with traditional thresholding method along with edge detector, the proposed algorithm showed promising result. It offers a relatively higher accuracy and can be used on color image instead of gray image with little computing complexity. A conclusion can be drawn that the present method is suited for wear particles’ image segmentation and can be put into practical use in wear particles’ identification system. Research limitations/implications One major problem is when small particles with similar texture are attached, the algorithm will not take them as two but as one big particle. The other problem is when dealing with thin particles, mainly abrasive particles, the algorithm usually takes it as a single line instead of an area. These problems might be solved by introducing a smaller scale of 9 × 9 window or by making use of some edge enhance technique. In this way, the subtle edges between small particles or thin particles might be detected. But the effectiveness of a scale this small shall be tested. One can also magnify the original picture to double or even triple its size, but it will dramatically increase the calculating time. Originality/value A new unsupervised segmentation algorithm is proposed. Using the property of the edge image, we can get target out of its background, automatically. A rather complete research is done. The method is not only introduced but also completely tested. The authors examined parameters and found the best set of parameters for different kinds of wear particles. To ensure that the proposed method can work on images under different condition, three kinds of tribology tests have been carried out to simulate different wears. A criterion is designed so that the performances can be compared quantitatively which is quite valuable.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference23 articles.

1. A review on machinery diagnostics and prognostics implementing condition-based maintenance;Mechanical Systems and Signal Processing,2006

2. Improving the performance of k-means for color quantization;Image and Vision Computing,2010

3. Peer group filtering and perceptual color image quantization,1999

4. Unsupervised segmentation of color-texture regions in images and video;IEEE Transactions on Pattern Analysis and Machine Intelligence,2001

5. The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques;Wear,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3