Supervised learning to covering cost risk through post-construction evaluation of transportation projects by project delivery methods

Author:

Bae JunseoORCID

Abstract

PurposeThe main objectives of this study are to (1) develop and test a cost contingency learning model that can generalize initially estimated contingency amounts by analyzing back the multiple project changes experienced and (2) uncover the hidden link of the learning networks using a curve-fitting technique for the post-construction evaluation of cost contingency amounts to cover cost risk for future projects.Design/methodology/approachBased on a total of 1,434 datapoints collected from DBB and DB transportation projects, a post-construction cost contingency learning model was developed using feedforward neural networks (FNNs). The developed model generalizes cost contingencies under two different project delivery methods (i.e. DBB and DB). The learning outputs of generalized contingency amounts were curve-fitted with the post-construction schedule and cost information, specifically aiming at uncovering the hidden link of the FNNs. Two different bridge projects completed under DBB and DB were employed as illustrative examples to demonstrate how the proposed modeling framework could be implemented.FindingsWith zero or negative values of change growth experienced, it was concluded that cost contingencies were overallocated at the contract stage. On the other hand, with positive values of change growth experienced, it was evaluated that set cost contingencies were insufficient from the post-construction standpoint. Taken together, this study proposed a tangible post-construction evaluation technique that can produce not only the plausible ranges of cost contingencies but also the exact amounts of contingency under DBB and DB contracts.Originality/valueAs the first of its kind, the proposed modeling framework provides agency engineers and decision-makers with tangible assessments of cost contingency coupled with experienced risks at the post-construction stage. Use of the proposed model will help them evaluate the allocation of appropriate contingency amounts. If an agency allocates a cost contingency benchmarked from similar projects on aspects of the base estimate and experienced risks, a set contingency can be defended more reliably. The main findings of this study contribute to post-construction cost contingency verification, enabling agency engineers and decision-makers to systematically evaluate set cost contingencies during the post-construction assessment stage and achieving further any enhanced level of confidence for future cost contingency plans.

Publisher

Emerald

Reference59 articles.

1. Accuracy in estimating project cost construction contingency-a statistical analysis,2004

2. Estimating project cost contingency-Beyond the 10% syndrome,2005

3. The maturing concept of estimating project cost contingency: a review,2006

4. An overview of budget contingency calculation methods in construction industry;Procedia Engineering,2014

5. Optimizing for generalization in machine learning with cross-validation gradients;arXiv Preprint,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3