Robotic additive manufacturing system for dynamic build orientations

Author:

Fry Nicholas R.,Richardson Robert C.,Boyle Jordan H.

Abstract

Purpose This paper aims to present a multi-axis additive robot manufacturing system (ARMS) and demonstrate its beneficial capabilities. Design/methodology/approach ARMS was constructed around two robot arms and a fused filament fabrication (FFF) extruder. Quantitative experiments are conducted to investigate the effect of printing at different orientations with respect to gravity, the effect of dynamically changing build orientation with respect to the build tray when printing overhanging features, the effect of printing curved parts using curved, conformal layers. These capabilities are combined to print an integrated demonstrator showing potential practical benefits of the system. Findings Orientation with respect to gravity has no effect on print quality; dynamically changing build orientation allows overhangs up to 90° to be cleanly printed without support structures; printing an arch with conformal layers significantly increases its strength compared to conventional printing. Research limitations/implications The challenge of automatic slicing algorithms has not been addressed for multi-axis printing. It is shown that ARMS could eventually enable printing of fully-functional prototypes with embedded components. Originality/value This work is the first to prove that the surface roughness of an FFF part is independent of print orientation with respect to gravity. The use of two arms creates a novel system with more degrees of freedom than existing multi-axis printers, enabling studies on printing orientation relationships and printing around inserts. It also adds to the emerging body of multi-axis literature by verifying that curved layers improve the strength of an arch which is steeply curved and printed with the nozzle remaining normal to the curvature.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference22 articles.

1. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material;Progress in Additive Manufacturing,2016

2. 3D printing of electro mechanical systems,2013

3. Robot-assisted 3D printing of biopolymer thin shells;The International Journal of Advanced Manufacturing Technology,2017

4. Design and fabrication of multi-material structures for bioinspired robots;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2009

5. How to make almost anything: the digital fabrication revolution;Foreign Aff,2012

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3