The effect of process parameters on the residual stress of selective laser melted Inconel 718 thin-walled part

Author:

Chen Changpeng,Yin Jie,Zhu Haihong,Zeng Xiaoyan,Wang Guoqing,Ke Linda,Zhu Junjie,Chang Shijie

Abstract

Purpose High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is to predict the residual stress distribution and the effect of process parameters on the residual stress of selective laser melted (SLMed) Inconel 718 thin-walled part. Design/methodology/approach A three-dimensional (3D) indirect sequentially coupled thermal–mechanical finite element model was developed to predict the residual stress distribution of SLMed Inconel 718 thin-walled part. The material properties dependent on temperature were taken into account in both thermal and mechanical analyses, and the thermal elastic–plastic behavior of the material was also considered. Findings The residual stress changes from compressive stress to tensile stress along the deposition direction, and the residual stress increases with the deposition height. The maximum stress occurs at both ends of the interface between the part and substrate, while the second largest stress occurs near the top center of the part. The residual stress increases with the laser power, with the maximum equivalent stress increasing by 21.79 per cent as the laser power increases from 250 to 450 W. The residual stress decreases with an increase in scan speed with a reduction in the maximum equivalent stress of 13.67 per cent, as the scan speed increases from 500 to 1,000 mm/s. The residual stress decreases with an increase in layer thickness, and the maximum equivalent stress reduces by 33.12 per cent as the layer thickness increases from 20 to 60µm. Originality/value The residual stress distribution and effect of process parameters on the residual stress of SLMed Inconel 718 thin-walled part are investigated in detail. This study provides a better understanding of the residual stress in SLM and constructive guidance for process parameters optimization.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference46 articles.

1. Selective laser melting for manufacturing of thin-walled porous elements;Journal of Materials Processing Technology,2015

2. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V;Materials Science and Engineering: A,2017

3. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing;Materials and Design,2017

4. Laser-assisted machining of Inconel 718 with an economic analysis;International Journal of Machine Tools and Manufacture,2006

5. Investigating the residual stress distribution in selective laser melting produced Ti-6Al-4V using neutron diffraction;Materials Research Proceedings,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3