Microstructure and mechanical properties of double-wire feed GTA additive manufactured 308L stainless steel

Author:

Ke Yang,Xiong Jun

Abstract

Purpose This paper aims to introduce a novel concept of a double-wire feed (DWF) to alleviate heat accumulation and improve the cooling rate of the molten pool in gas tungsten arc (GTA)-based additive manufacturing (AM), in which the former wire is fed into the arc and the latter wire is melt by the molten pool. Design/methodology/approach The microstructure, phase composition and mechanical properties of 308 L stainless steel components built by single-wire feed (SWF) AM and DWF-AM are compared, and the differences are analyzed in detail. Findings The microstructures for both wire feeding modes include δ and γ phases. Compared with the SWF-AM, the sample fabricated in the DWF-AM exhibits finer microstructure, and the microstructure in the middle region is transformed from columnar grains to cellular grains. Microhardness of the sample produced in the DWF-AM is higher than the SWF-AM. In comparison to the SWF-AM, the tensile strength of the specimen fabricated using the DWF-AM reaches 571 MPa and increases by 16.14%. Originality/value This study proposes a novel concept of the DWF-AM to reduce heat accumulation as well as enhance the cooling rate of the molten pool, and improved mechanical properties of the 308 L stainless steel component are obtained.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference27 articles.

1. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing;The International Journal of Advanced Manufacturing Technology,2016

2. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing;Materials Science and Engineering: A,2017

3. Laser aided direct metal deposition of inconel 625 superalloy: microstructural evolution and thermal stability;Materials Science and Engineering: A,2009

4. Effect of real-time cooling rate on microstructure in laser additive manufacturing;Journal of Materials Processing Technology,2016

5. The double-wire feed and plasma arc additive manufacturing process for deposition in Cr-Ni stainless steel;Journal of Materials Processing Technology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3