Development of a textile multilayered device with piezoelectric property using different knitted fabric structures

Author:

Maestri Gabriela,Merlini Claudia,Mejia Leonardo,Steffens Fernanda

Abstract

Purpose This study aims to develop two piezoelectric textile devices formed from different weft knitted fabric rapports (Jersey and Pique) to be applied in the renewable energy’s (RE) area. Design/methodology/approach Two different weft knitted rapports were produced with polyester (PES). The device developed has five layers: a central of poly(vinylidene fluoride) (PVDF) nonwoven, involved by two insulating layers of PES knitted fabric; and two conductive external layers, made of polypyrrole-coated PES knitted fabric. The piezoelectric textile devices were joined by sewing the five layers of the device. Findings The FTIR technique confirmed the β-phase in the PVDF nonwoven. This study produced and tested two different textiles devices with piezoelectric behavior, confirmed by the correlated pattern of voltage and tensile stress difference curves, showing the potential application in RE’s and sustainable energies field as smart textiles, such as devices incorporated in garments in the areas of high movement (elbow, knee, foot, fingers and hands, among others), and as an energy generator device Originality/value Textile materials with piezoelectric properties promise to advance RE’s developments due to their high material flexibility and sensitivity to the electrical response. The knitted fabric technology presents flexibility due to its construction process. Comparative studies analyzing the electrical response between knitted and woven fabrics have already been realized. However, there is a gap in terms of research scientific research regarding the comparison of the piezoelectric effect in a material that presents different knitted fabric rapports.

Publisher

Emerald

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3