Temperature-dependent variable viscosity and thermal conductivity effects on non-Newtonian fluids flow in a porous medium

Author:

Florence Ayegbusi Dami

Abstract

Purpose The purpose of this paper is to consider the simultaneous flow of Casson Williamson non Newtonian fluids in a vertical porous medium under the influence of variable thermos-physical parameters. Design/methodology/approach The model equations are a set of partial differential equations (PDEs). These PDEs were transformed into a non-dimensionless form using suitable non-dimensional quantities. The transformed equations were solved numerically using an iterative method called spectral relaxation techniques. The spectral relaxation technique is an iterative method that uses the Gauss-Seidel approach in discretizing and linearizing the set of equations. Findings It was found out in the study that a considerable number of variable viscosity parameter leads to decrease in the velocity and temperature profiles. Increase in the variable thermal conductivity parameter degenerates the velocity as well as temperature profiles. Hence, the variable thermo-physical parameters greatly influence the non-Newtonian fluids flow. Originality/value This study considered the simultaneous flow of Casson-Williamson non-Newtonian fluids by considering the fluid thermal properties to vary within the fluid layers. To the best of the author’s knowledge, such study has not been considered in literature.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference45 articles.

1. Unsteady problem of magnetohydrodynamic heat plus mass transfer convective flow over a moveable plate with effects of thermophoresis and thermal radiation;Heat Transfer,2020

2. Dissipative slip flow along heat and mass transfer over a vertically rotating cone byway of chemical reaction with Dufour and Soret effects;AIP Advances,2016

3. Thermal radiation on unsteady electrical MHD flow of nanofluid over stretching sheet with chemical reaction;Journal of King Saud University – Science,2019

4. Slip role for unsteady MHD mixed convection of nanofluid over stretching sheet with thermal radiation and electric field;Indian Journal of Physics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3