The role of delayed water curing in improving the mechanical and microstructural properties of alkali activated fly ash based geopolymer paste blended with slag

Author:

Dutta Debabrata,Ghosh Somnath

Abstract

Purpose This paper aims to investigate the effect of delayed water curing on the mechanical and microstructural properties of fly ash-based geopolymer paste-blended with Ground Granulated Blast Furnace Slag (GGBS) with different rest periods. Design/methodology/approach The blended geopolymer paste was composed of GGBS (15 per cent of the total weight) and the base material, Fly Ash (FA). The blended mix was activated by activator solution (Sodium hydroxide and Sodium silicate) containing 6 per cent Na2O of total base material. The effect of delayed water curing has been studied by gradually increasing the aging period (Rest Period) from 2 hours to 24 hours in the formation of activated outcome along with Calcium Silicate Hydrate (CSH). To analyze the mechanical and microstructural properties of the resultant blended geopolymer paste, compressive strength test, FESEM and XRD have been carried out. Moreover, a long-term durability test subjected to sulphate exposure has been performed to evaluate the durability of the designed sustainable geopolymer paste. Findings The present paper shows that the delayed water curing incorporates secondary heat input enhancing the partial polymer formation along with CSH. Slag-blended AAFA-based geopolymer paste is seen to exhibit quick setting property. Also, AAFA-based geopolymer paste samples subjected to longer rest period show early strength gain at a high rate under water curing as compared to those subjected to the shorter rest period. Originality/value To the best of authors’ knowledge, the effect of delayed water curing on the mechanical and microstructural properties of slag-blended AAFA-based geopolymer paste has not been studied before.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference37 articles.

1. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio;Materials Letters,2001

2. Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures;Cement and Concrete Research,2001

3. Bond strength between blended slag and class F fly ash geopolymer concrete with steel reinforcement;Cement and Concrete Research,2015

4. Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems;Cement and Concrete Research,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3