Author:
Ma Lijie,Mao Xinhui,Li Chenrui,Zhang Yu,Li Fengnan,Pang Minghua,Feng Qigao
Abstract
Purpose
The purpose of this study is to reveal the friction reduction performance and mechanism of granular flow lubrication during the milling of difficult-to-machining materials and provide a high-performance lubrication method for the precision cutting of nickel-based alloys.
Design/methodology/approach
The milling tests for Inconel 718 superalloy under dry cutting, flood lubrication and granular flow lubrication were carried out, and the milling force and machined surface quality were used to evaluate their friction reduction effect. Furthermore, based on the energy dispersive spectrometer (EDS) spectrums and the topographical features of machined surface, the lubrication mechanism of different granular mediums was explored during granular flow lubrication.
Findings
Compared with flood lubrication, the granular flow lubrication had a significant force reduction effect, and the maximum milling force was reduced by about 30%. At the same time, the granular flow lubrication was more conducive to reducing the tool trace size, repressing surface damage and thus achieving better surface quality. The soft particles had better friction reduction performance than the hard particles with the same particle size, and the friction reduction performance of nanoscale hard particles was superior to that of microscale hard particles. The friction reduction mechanism of MoS2 and WS2 soft particles is the mending effect and adsorption film effect, whereas that of SiO2 and Al2O3 hard particles is mainly manifested as the rolling and polishing effect.
Originality/value
Granular flow lubrication was applied in the precision milling of Inconel 718 superalloy, and a comparative study was conducted on the friction reduction performance of soft particles (MoS2, WS2) and hard particles (SiO2, Al2O3). Based on the EDS spectrums and topographical features of machined surface, the friction reduction mechanism of soft and hard particles was explored.
Reference26 articles.
1. Metal cutting lubricants and cutting tools: a review on the performance improvement and sustainability assessment;The International Journal of Advanced Manufacturing Technology,2020
2. Development of a mixture supply system for machining with minimal quantity lubrication;CIRP Annals,2002
3. Machinability of nickel-based high temperature alloys;Machining Science and Technology,2000
4. Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V;The International Journal of Advanced Manufacturing Technology,2019
5. Roles of nanoparticles in oil lubrication;Tribology International,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献