Artificial neural network model for evaluation the effect of surface properties amendment on slurry erosion behavior of AISI 5117 steel

Author:

Saleh Bahaa,Aly Ayman A.

Abstract

Purpose The aim of this paper is to evaluate the effect of surface treatment on slurry erosion behavior of AISI 5,117 steel using artificial neural network (ANN) technique. Design/methodology/approach The slurry erosion wear behavior of electroless nickel-phosphorus (Ni-P) coated, carburized and untreated AISI 5,117 alloy steel was investigated experimentally and theoretically using ANN technique based on error back propagation learning algorithm. Findings From the obtained results, it can be concluded that the proposed AAN model can be successfully used for evaluating slurry erosion behavior of the Ni-P coated, carburized and untreated AISI 5,117 steel for wide range of operating conditions and Ni-P coating and carburizing improve the slurry erosion resistance of AISI 5,117 steel; however, the coating is more efficient. Originality/value Slurry erosion is a serious problem for the performance, reliability and service life of engineering components used in many industrial applications. To improve the performance of these components, engineering surface technologies have been attracting a great deal of attention. The extent of slurry erosion is dependent on a wide range of variables. To account all variables that effect on erosion behavior, prediction of erosion behavior by soft computational technique is one of the most important requirements. ANN has the ability to tackle the problem of complex relationships among variables that cannot be accomplished by traditional analytical methods.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3