Design, engineering and testing of an innovative adaptive automation assembly system

Author:

Bortolini Marco,Faccio Maurizio,Galizia Francesco Gabriele,Gamberi Mauro,Pilati Francesco

Abstract

Purpose Industry 4.0 emerged as the Fourth Industrial Revolution aiming at achieving higher levels of operational efficiency, productivity and automation. In this context, manual assembly systems are still characterized by high flexibility and low productivity, if compared to fully automated systems. Therefore, the purpose of this paper is to propose the design, engineering and testing of a prototypal adaptive automation assembly system, including greater levels of automation to complement the skills and capabilities of human workers. Design/methodology/approach A lab experimental field-test is presented comparing the assembly process of a full-scale industrial chiller with traditional and adaptive assembly system. Findings The analysis shows relevant benefits coming from the adoption of the adaptive automation assembly system. In particular, the main findings highlight improvements in the assembly cycle time and productivity, as well as reduction of the operator’s body movements. Practical implications The prototype is applied in an Italian mid-size industrial company, confirming its impact in terms of upgrades of the assembly system flexibility and productivity. Thus, the research study proposed in this paper provides valuable knowledge to support companies and industrial practitioners in the shift from traditional to advanced assembly systems matching current industrial and market features. Originality/value This paper expands the lacking research on adaptive automation assembly systems design proposing an innovative prototype able to real-time reconfigure its structure according to the product to work, e.g. work cycle, and the operator features.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3