Improved multi-objective cuckoo search algorithm with novel search strategies for point-to-point part feeding scheduling problems of automotive assembly lines

Author:

Zhou Binghai,Li Xiujuan,Zhang Yuxian

Abstract

Purpose This paper aims to investigate the part feeding scheduling problem with electric vehicles (EVs) for automotive assembly lines. A point-to-point part feeding model has been formulated to minimize the number of EVs and the maximum handling time by specifying the EVs and sequence of all the delivery tasks. Design/methodology/approach First, a mathematical programming model of point-to-point part feeding scheduling problem (PTPPFSP) with EVs is presented. Because the PTPPFSP is NP-hard, an improved multi-objective cuckoo search (IMCS) algorithm is developed with novel search strategies, possessing the self-adaptive Levy flights, the Gaussian mutation and elite selection strategy to strengthen the algorithm’s optimization performance. In addition, two local search operators are designed for deep optimization. The effectiveness of the IMCS algorithm is verified by dealing with the PTPPFSP in different problem scales. Findings Numerical experiments are used to demonstrate how the IMCS algorithm serves as an efficient method to solve the PTPPFSP with EVs. The effectiveness and feasibility of the IMCS algorithm are validated by approximate Pareto fronts obtained from the instances of different problem scales. The computational results show that the IMCS algorithm can achieve better performance than the other high-performing algorithms in terms of solution quality, convergence and diversity. Research limitations/implications This study is applicable without regard to the breakdown of EVs. The current research contributes to the scheduling of in-plant logistics for automotive assembly lines, and it could be modified to cope with similar part feeding scheduling problems characterized by just-in-time (JIT) delivery. Originality/value Both limited electricity capacity and no earliness and tardiness constraints are considered, and the scheduling problem is solved satisfactorily and innovatively for an efficient JIT part feeding with EVs applied to in-plant logistics.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3