Energy efficient modeling and optimization for assembly sequence planning using moth flame optimization

Author:

Abdullah Arif,Ab Rashid Mohd Fadzil Faisae,Ponnambalam S.G.,Ghazalli Zakri

Abstract

Purpose Environmental problems in manufacturing industries are a global issue owing to severe lack fossil resources. In assembly sequence planning (ASP), the research effort mainly aims to improve profit and human-related factors, but it still lacks in the consideration of the environmental issue. This paper aims to present an energy-efficient model for the ASP problem. Design/methodology/approach The proposed model considered energy utilization during the assembly process, particularly idle energy utilization. The problem was then optimized using moth flame optimization (MFO) and compared with well-established algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). A computational test was conducted using five assembly problems ranging from 12 to 40 components. Findings The results of the computational experiments indicated that the proposed model was capable of generating an energy-efficient assembly sequence. At the same time, the results also showed that MFO consistently performed better in terms of the best and mean fitness, with acceptable computational time. Originality/value This paper proposed a new energy-efficient ASP model that can be a guideline to design assembly station. Furthermore, this is the first attempt to implement MFO for the ASP problem.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3