Improvement of fire door design using experimental and numerical modelling investigations

Author:

Khalifa Mohamed A.,Aziz Mohamed A.ORCID,Hamza Mohamed,Abdo SaberORCID,Gaheen Osama A.

Abstract

PurposeFire door should withstand a high temperature without deforming. In the current paper, the challenges of improving the behaviour of the conventional fire door were described using various internal stiffeners in pair swinging-type fire door.Design/methodology/approachThe temperature distribution on the outside door surface was measured with distributed eight thermocouples. Subsequently the internal side was cooled with pressurized water hose jet stream of 4 bar. The transient simulation for the thermal and structure analysis was conducted using finite element modelling (FEM) with ANSYS 19. The selected cross sections during numerical simulation were double S, double C and hat omega stiffeners applied to 2.2 m and 3 m door length.FindingsDuring the FEM analysis, the maximum deformations were 7.2028, 5.4299, 5.023 cm for double S, double C and hat omega stiffeners for 2.2 m door length and 6.57, 4.26, 2.1094 cm for double S, double C and hat omega stiffeners for 3 m door length. Finally, hat omega gives more than three times reduction in the deformation of door compared to double S stiffeners which provided a reference data to the manufacturers.Research limitations/implicationsThe research limitation included the limited number of fire door tests due to the high cost of single test, and the research implication was to achieve an optimal study in fire door design.Practical implicationsAchieving the optimum design for the internal door stiffeners where the hat omega stiffener gives minimum door deformation compared to the other stiffeners was considered the practical implication. The work included two experimental fire door tests according to the standard fire test (ANSI/UL 10C – Positive Pressure of Fire Tests of Door Assemblies) for a door of 2.2 m length with double S stiffeners and a door of 3 m length with hat omega stiffeners, which achieved minimum deformation.Originality/valueThe behavior and mechanical response of door leaf were improved through using internal hat omega stiffeners under fire testing. This study was achieved using FEM in ANSYS 19 for six cases of different lengths and stiffeners for fire doors. The simulation model showed a very close agreement with the experimental results with an error of 0.651% for double S and 1.888% for hat omega.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference20 articles.

1. Thermo-mechanical analysis of a fire door for naval applications;Journal of Fire Sciences,2015

2. Numerical methodology for thermal-mechanical analysis of fire doors,2015

3. Assessment of physical phenomena associated to fire doors during standard tests;Fire Technology,2013

4. Designed numerical simulation calculations of the fire protection capability of elevator doors;Advances in Information Sciences and Service Sciences,2012

5. Numerical and experimental studies on temperature and distortion patterns in butt-welded plates;The International Journal of Advanced Manufacturing Technology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3