Considering online consumer reviews to predict movie box-office performance between the years 2009 and 2014 in the US

Author:

Hu Ya-Han,Shiau Wen-Ming,Shih Sheng-Pao,Chen Cho-Ju

Abstract

Purpose The purpose of this paper is to combine basic movie information factors, external factors and review factors, to predict box-office performance and identify the most crucial factor of influence for box-office performance. Design/methodology/approach Five movie genres and first-week movie reviews found on IMDb were collected. The movie reviews were quantified using sentiment analysis tools SentiStrength and Stanford CoreNLP, in which quantified data were combined with basic movie information and external environment factors to predict movie box-office performance. A movie box-office performance prediction model was then developed using data mining (DM) technologies with M5 model trees (M5P), linear regression (LR) and support vector regression (SVR), after which movie box-office performance predictions were made. Findings The results of this paper showed that the inclusion of movie reviews generated more accurate prediction results. Concerning movie review-related factors, the one that exhibited the greatest effect on box-office performance was the number of movie reviews made, whereas movie review content only displayed an effect on box-office performance for specific movie genres. Research limitations/implications Because this paper collected movie data from the IMDb, the data were limited and primarily consisted of movies released in the USA; data pertaining to less popular movies or those released outside of the USA were, thus, insufficient. Practical implications This paper helps to verify whether the consideration of the features extracted from movie reviews can improve the performance of movie box-office. Originality/value Through various DM technologies, this paper shows that movie reviews enhanced the accuracy of box-office performance predictions and the content of movie reviews has an effect on box-office performance.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3