A passive SPICE model for rectennas

Author:

Pereira Polyanna Mara,Campelo Felipe,Mori Takuya,Igarashi Hajime,Adriano Ricardo

Abstract

Purpose This paper aims to present a SPICE model to represent antennas in receiving mode. The model can be used to evaluate the performance of the antenna when it is coupled to several different nonlinear electric circuits. The proposed methodology is particularly suitable for rectenna applications, as it allows the analysis of different configurations for a rectenna more efficiently than using full-wave analysis simulators coupled directly to each rectifier circuit. Design/methodology/approach The model presented uses reciprocity theory to calculate the ideal voltage source of the Thevenin-equivalent circuit for an antenna. Vector fitting is then used to approximate the model to rational functions that can be converted to Resistor, Inductor and Capacitor circuits. Additional components are added to the circuit to prevent numerical instability. Findings Two rectennas are used to illustrate the performance of the proposed model, one based on a 2.45-GHz rectangular patch antenna and another based on a planar spiral antenna. The second antenna has impedance with positive and negative real parts along the frequency range, which could lead to numerical instabilities. The proposed method is shown to be stable while working with these negative resistance values, which may appear during circuit parameterization. Research limitations/implications The equivalent SPICE circuit model for the antenna makes it easy to simulate nonlinear circuits connected to the antenna and perform transient analyses. The computational cost of antenna analysis is reduced, being more computationally efficient than methods that involve full-wave simulation. This characteristic makes it an interesting approach for working with rectennas, or any application where the time constant of the circuit is much longer than the period of the incident wave. Originality/value For most antenna applications, the numerical stability of the circuit can be achieved using passive enforcement. However, depending on the phase response of the antenna, the impedance that represents its far-field characteristic may present a negative real part, in which case, passive enforcement will fail. In this paper, the problem of numerical instability is solved by introducing an offset resistance and a current-controlled voltage source to the model.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference16 articles.

1. A design of miniaturized ultra-wideband printed slot antenna with 3.5/5.5 GHz dual band notched characteristics: analysis and implementation;Progress in Electromagnetics Research B,2013

2. Spice equivalent circuits of frequency-domain responses;IEEE Transactions on Electromagnetic Compatibility,2003

3. The history of power transmission by radio waves;IEEE Transactions on Microwave Theory and Techniques,1984

4. Wide frequency band analysis of an antenna by finite elements;Compel – the International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2006

5. A global time domain circuit simulation of a microwave rectenna;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3